Guide to Negating Formulas

Hi everybody!

—

N

We spent a little bit of time in class

talking about how to negate formulas in

N—

propositional or first-order logic.

~

—

N

This is a really valuable skill! If you ever
need to write a proof by contradiction or
a proof by contrapositive, you'll need to

N—

know how to negate formulas.

~

—

N

While this might seem a bit tricky at first,

N—

the good news is that there's a nice,
mechanical way that you can negate
formulas!

~

—

N

There's still a bit of art to it, but by

learning a few simple rules and how to
apply them, you can negate just about

N—

anything!

~

For example...

~

—~p A(qVT) -a O

Let's imagine that you want to
negate this formula to the left.

h ~/

(=p A (q V1) o T

To do so, we're going to begin
by surrounding the formula
in parentheses...

h ~/

—“(=pA(qVvr))

—

N—

™~

And putting a negation symbol

in front.

~

=(=p A (q V1) - O
Technically speaking, this formula
is the negation of the original
formula, though it's hard to see
exactly what this formula says.

h ~/

=(=p A (q V1) - O
Most of the time, when you need
to find the negation of a formula,
you're going to want to simplify

it by pushing the negations inward.

~ ~J

—(=p A (q V 1)) o T

The good news is that there are
a humber of rules we can use
to do this.

~ ~J

=(=p A (q V1) . O
If you remember from our lecture
on propositional logic, we saw a
series of rules for simplifying
negations.

~ ~J

—(=p A (q V1)) - O

For example, we saw de Morgan's
laws, which say that

- (A A B) -A VvV —B
-(A v B) -A A B

~ ~J

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

—“(=pA(qVvr))

—

N—

™~

I'm going to write this rules
up at the top of the screen.

~

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

—“(=pA(qVvr))

—

N—

™~

We haven't talked about this

notation before, but the good

news is that it's not too bad.
Let's take a look at this.

~

~(A v B) ~AANB) (

—-A AN =B -A VvV —-B

N—

Generally speaking, these rules
look like this:
Before
After

o4

—“(=pA(qVvr))

~(A V B) ~AANB) (

A rule like this means “if you see
-A N B -A VvV -B Before, replace it with After.”
Before
\ After

™~

o4

—“(=pA(qVvr))

'

N—

™~

So let's look at this rule on
the right.

&4

—“(=pA(qVvr))

~AVB) ‘ =AAB) ¢ N

This rule says

~AA-B | AV -B

“if you see something of the form
- (A N B)
replace it with
-A vV -B.”

N—

&4

—“(=pA(qVvr))

~(AVB) | =(AAB)
~AN-B | AV -B |
=(=p A (q Vv T) a)

Take a look at our original
formula. If you look at it closely,
you'll see that it matches this
particular pattern.

T

—“(=pA(qVvr))

—

N—

™~

That means that we can apply

this rule and rewrite it...

~

—

™~

...S0 that it looks like this.

"

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

— ™~

Notice that we've “pushed” the
negation deeper into the
formula.

—

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

— ™~

Basically, we just need to keep

applying these rule templates

over and over until the formula
is as simple as it can get.

— \/

- (A V B) - (A N B)
-A N B -A VvV —-B
—(q v 1) - O

N—

So let's focus on this part of
the formula for now.

"

-(A VvV B) —-(A A B)
~A A -B | -A v =B
Notice that it matches this
particular template.
N—

~

-(A VvV B) —-(A A B)
~A A -B | -A VvV —-B
So let's apply this rule to
simplify the formula!
N—

~

g —(A v B) g —~(A A B)
. ~AA-B | -Av-B
(=g A 1) o O

Now we've got this, which has
the negation pushed deeper
into the formula! We're making
progress!

— \/

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

—

N—

™~

So what about the other part of

this formula?

~

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

— ™~

Well, this is a double-negation.
Intuitively, we'd expect these
two negations to cancel out.

— \/

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

—

N—

™~

Indeed, that's what happens.

We can write this down as the rule

_I_IA

N

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

— ™~

So let's go and apply this rule!

—_

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

Tada!

——-A - (A V B) - (A N B)
A -A AN B -A VvV -B
- TN
p v (_' q A _'T') At this point we can't push the

negations any deeper into the
formula. They're directly applied
to propositions, which can't be

simplified.

— \/

——-A - (A V B) - (A N B)
A -A N B -A VvV —-B
pVv(=gA - O

So we're done!

"

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

pVv(—=qAn-—r)

— ™~

Of course, before moving on,
we should be sure to check our
work!

—

——-A - (A V B) - (A N B)
A -A N 0B -A VvV B
pVv (=g AN -—T) ~)
Here's the original formula.
(Think of this as the “before” in
—lp A (q V T') the “before and after” shots.)

—

——-A - (A V B) - (A N B)
A -A AN B -A Vv -B
pVv (=g A -—r) -)
Is there some way we can check
whether we negated this formula
“pA(QVT properly?

— \/

——-A - (A V B) - (A N B)
A -A AN -B -A Vv -B
pV (=g A -r) @ O
Yes, actually! There are several.
“pA(qQVT)

N—

"

——-A - (A V B) - (A N B)
A -A N B -A VvV -B
pVv (=g AN -—T) - T
Let's begin with an intuitive check.
What do each of these formulas
“pA(QVT actually mean?

— "~

——-A - (A V B) - (A N B)
A -A N B -A VvV —-B
pVv(=qA) o O

N—

This formula means “p is true,

or both g and r are false.”

"

——-A - (A V B) - (A N B)
A -A AN B -A VvV -B
~ TN
This formula means “p is false
and at leastone of gandr
“pA(gqVT) is true.”

—

——A —-(A v B) —-(A N B)
A -A AN B -A VvV -B
pVv (=g A —r) - T
Intuitively, these statements seem
—'P A (q V T') to check out as opposites.

N—

~

——-A - (A V B) - (A N B)
A -A AN -B -A Vv -B
V(=g A =1 -)
p (q) If the first one is true, then
either p is true (so —p is false),
orgqandrarefalse(sogqvr
_'p A (q v T') is false.)

N—

~

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

pVv(—=qAn-—r)

“pA(qQVT)

— ™~

Similarly, if the second one is
true, then —pis true (so p is
false), and at least one of g and
r are true (so =g A —ris false).

— \/

——A - (A v B) - (A N B)
A -A AN B -A Vv -B
pVv (=g A —r) - T
So in that sense, intuitively,
—'P A (q V r.) everything checks out.

N—

~

——-A - (A v B) - (A N B)
A -A AN B -A VvV -B
pVv (=g AN -—T) -)
Of course, a lot of things that
make intuitive sense aren't right,
so perhaps we should check this
_'p A (q Vv r) in a different way.

7

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

pVv(—=qAn-—r)

“pA(qQVT)

—

N—

When we're dealing with
propositional logic, we can
always check the truth
tables for these formulas and
see how they compare!

™~

pvVv (mg A —r)

4| 4|/ d|d4|m|m|m|7N|o
e I R e N i N R -
A4 m|A|mM| A M4 N =

(p V(g A ")

T

w4 =|d|[4|m| mm

“p A (qQV o)
P g r ("pA(qVvr)
F F F F
FF T T
F T F T
FTT T
T F F F
T F T F
T T F F
T|IT|T F

pVv(—qgn-—r)

“pA(qQVT)

—

N—

If you punch in these two

that you'll get back.

™~

formulas, here's the truth tables

pvVv (mg A —r)

4| 4|/ d|d4|m|m|m|7N|o
e I R e N i N R -
A4 m|A|mM| A M4 N =

(p V(g A ")

T

w4 =|d|[4|m| mm

“p A (qQV o)
P g r ("pA(qVvr)
F F F F
FF T T
F T F T
FTT T
T F F F
T F T F
T T F F
T|IT|T F

pVv(—qgn-—r)

“pA(qQVT)

— ™~

Notice that, going row by row,
the truth values are opposites
of one another. That means that
they're negations of one another!

N—

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

pVv(—=qAn-—r)

“pA(qQVT)

— ™~

There's actually a different way
to use the truth table tool to
check if two formulas are
negations of one another.

N

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

pVv(—=qAn-—r)

“pA(qQVT)

— ™~

Imagine that you have two
formulas Aand B. If Ais a
negation of B, then any time A
is true, B is false and vice-versa.

— \/

——-A - (A V B) - (A N B)
A -A AN B -A vV B
pVv (=g A -—r) - T
That means that the formula
Ae B
_'p A (q v T') should always evaluate to false.

— \/

——-A - (A V B) - (A N B)

A -A AN 0B —A VvV -B

— ™~

So in our case, we can try
punching in this formula into

=P A (Cl Vv T') the truth table tool.

pVv(—qgn-—r)

—

(pbv(mgA-—-r) < (—=pA(qVvr)

~-A (A B) (A 1 B)

(PV(gA-TT)=(pA(qVr))

—| || |m|m|7m|Nn|v
—| ||| A|[4|m|n|a
—|m|A |4 |m 4| 7=
g O I e e o O I p B 1 |

— ™~

If we do, here's what we
get back.

pVv(—qgn-—r)

“pA(qQVT)

N— \/

(pbv(mgA-—-r) < (—=pA(qVvr)

~-A (A B) (A 1 B)

A —Al P a r (PV(qA-M)<(pA(qVvr))
F F|F F
F F T F
F T F F
FTT F
T F F F
T F|T F
T T F F
T T T F

— ™~

Since the formula is always
false, we know that the two
formulas must be negations of

-p A (q V1) one another. Nifty!

pVv(—qgn-—r)

N— \/

(pbv(mgA-—-r) < (—=pA(qVvr)

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

—

™~

That wasn't so bad! Let's
do another one.

"

——-A - (A V B) - (A N B)

A —-A AN =B -A VvV —-B

(pV g A(=pA—Qq)

—

N—

™~

Let's try taking the negation of

this formula.

"

——-A - (A V B) - (A N B)

A —-A AN =B -A VvV —-B

(pV g A(=pA—Qq)

—

N—

Actually, before we do this
together, why don't you try
doing it yourself first!

"

——-A - (A V B) - (A N B)

A —-A AN =B -A VvV —-B

(pbv g A (—pA—Q)

— ™~

Take a minute or two to walk
through this one on your own.
See what you come up with!

N

——-A - (A V B) - (A N B)

A —-A AN =B -A VvV —-B

(pbv g A (—pA—Q)

—

N—

™~

So did you do it? If not, you

really should. It's good practice!

~

——-A - (A V B) - (A N B)

A —-A AN =B -A VvV —-B

(pbv g A (—pA—Q)

—

N—

So you did it? You've got an
answer? Great! Let's work
through this one together.

~

——-A - (A V B) - (A N B)

A —-A AN =B -A VvV —-B

((pv g A (—=pA—Qq))

—

N—

™~

As before, we begin by

surrounding it in parentheses...

~

——-A - (A V B) - (A N B)

A —-A AN =B -A VvV —-B

—((pVv q@ AN (—mp A —Qq))

—

N—

™~

...and putting a negation at the

front.

"

——-A - (A V B) - (A N B)

A —-A AN =B -A VvV —-B

=((pV @) A (=p A —Q)) a - O
Now, we're going to keep
applying rules to push the

negation deeper and deeper into

the expression.

— \/

——-A - (A V B) - (A N B)

A —-A AN =B -A VvV —-B

((p q) (p q)) Looking over the structure of
this formula, we can see that
it's a negation of two things

ANDed together.

— \/

——A - (A v B)

EX
>
>
=

—((pVv q@ AN (—mp A —Qq))

—

N—

™~

That means that we want to use

this rule.

"

-—=A -(A vV B) : =(A N B)
A ~AN-B | -Av-B |
—~((p VvV @) A (=p A —Q)) - O

Color-coding things to make it
easier to see which part is
which, we can now apply the
template...

—

——A - (A v B)

EX
>
>
=

—(p Vv q) VvV =(=p A —q)

—

N—

™~

...which gives us this initial
simplification.

"

——-A - (A V B) - (A N B)

A —-A AN =B -A VvV —-B

— ™~

Now, we can keep repeating this
process on each smaller part of
the expression.

— \/

—(p Vv q) VvV —-(=p A —Qq)

——-A - (A V B) - (A N B)
A —-A N B —-A VvV B

N—

Just because we can, let's start

with this part.

~

—

N—

™~

That matches the same rule as

before!

"

- (A V B)

EX
>
>
=

~AA-B | AV -B

—

N—

™~

So we can color-code things...

~

- (A V B)

EX
>
>
=

~AA-B | AV -B

—

N—

™~

...and apply the template.

"

——-A - (A V B) - (A N B)

A —-A AN =B -A VvV —-B

Progress!

"

——-A - (A V B) - (A N B)

A —-A AN =B -A VvV —-B

—

N—

™~

A reasonable next step would
be to look at these two

subexpressions, each of which is

a double-negation.

~

Here's the template...

~

—“(pvqg Vv(pVvqg

...anhd here's the result!

"

——A - (A v B)

- (A N B)

A —-A AN -B

-A vV —-B

—“(pvqg Vv(pVvqg

Cool! We're almost there.

~

——-A - (A V B) - (A N B)
A -A N B -A VvV —-B
—(p Vv q) - O

N—

Our last step is to deal with
this part of the expression.

~

I
]
>
EY
>
<
=

>
J
>
>
J
&=

—(p Vv q)

—

N—

™~

That matches this template.

~

I
]
>
EY
>
<
=

>
J
>
>
J
&=

—(p Vv q)

—

N—

™~

So we see how it matches...

~

—-—A : —(A v B) —(A A B)
A . ~AAN-B | -AV-B
(=p A =q) a I

...and apply the rule!

— \/

——-A - (A V B) - (A N B)

A —-A AN =B -A VvV —-B

(=p A —=q)V(pVq)

—

N—

™~

That's as deep as the negations

are going to go. We're done!

~

——-A - (A V B) - (A N B)

A —-A AN =B -A VvV —-B

(=p A —=q)V(pVq)

—

N—

™~

Of course, we have to check
our work.

~

——-A - (A V B) - (A N B)

A —-A AN =B -A VvV —-B

(=p A —=q)V(pVq)

(pv g AN(—=pA—Qq)

Here's where we started.

~

——-A - (A V B) - (A N B)

A —-A AN =B -A VvV —-B

(=p A —=q)V(pVq)

(pV g A(=pA—Qq)

— ™~

Why don't you go use the truth
table tool to check whether these
statements actually are negations

of one another?

— \/

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

—

N—

™~

Okay! So let's recap where we

are right now.

"

——A - (A v B)

A —-A AN -B

- (A N B)

-A vV —-B

— ™~

We have these nice and handy
templates available for simplifying
expressions with negations in them.

— \/

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

— ™~

We've talked about three ways
that you can check your work.

— \/

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

—

N—

™~

And we've gone through two
examples!

"

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

—

N—

™~

However, the rules above don't

cover all possible formulas.

~

——-A - (A V B) - (A N B)
A -A AN 0B -AV B

N—

For example, how would we
negate this formula?

~

——-A - (A V B) - (A N B)
A -A AN =B -A VvV —B

N—

First, let's refresh how to negate

an implication.

"

——-A - (A V B) - (A N B)
A -A AN 0B -AV B

Actually, before we review that
one directly, why don't you
review your notes and see how

you negate an implication?

——-A - (A V B) - (A N B)
A -A AN =B -A VvV —B
p A q — I - What goes below this line? O
—(A - B)
?7?
N—

"

——-A - (A V B) - (A N B)
A -A AN B -A vV B
\
p A q - I Here's the answer:
—(A - B)
AN B

~

——-A - (A v B) - (A N B) -(A - B)
A -A AN 0B -AV B AN B

Remember, the only way for an

implication to be false is if the

antecedent (A) is true and the
consequent (B) is false!

— \/

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN B

One of the most common mistakes
we see people make when negating
formulas is to get this wrong, so
commit this one to memory!

N

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN B

N—

Okay! Now that we have our
rule, let's see how to negate
this formula.

"

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV -B AN B
(pAg—T) - O

N—

As before, we parenthesize it...

~

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN B
—(pAg—T) o T

N—

...and put a negation out front.

"

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN B
~(pAg—T) o T

Now, we need to see what
template to apply.

~

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

—(A - B)

A AN —-B

—“(pANq—T)

— ™~

Here, we're going to run into an
operator precedence issue, which
we haven't seen yet.

"~

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN B
—(pAqg—T) o T

—((pANg)—T)

(?)

N—

Do we interpret the formula
like this?

"

——-A - (A v B) - (A N B) -(A - B)

A —-A AN =B -A vV —-B A AN —-B

—“(pANq—T)

Or like this?

~((pAq@~>1 (?) ~

(P A(G=1) ()

——-A - (A v B) - (A N B) -(A - B)

A —-A AN =B -A vV —-B A AN —-B

— ™~

Before we tell you, why don't
you look over your notes and
see what you find?

~((pAq)~1) (?) ~~
P A(@-7) () \/

—“(pANq—T)

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN B
~(pAg—T) o T

“((pAng)—-1) (?)
—“(pA(g—-1) (?)

N—

Okay... you've got a guess?

~

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN B
—(pAg—T) o T

—((pAQq)—T)
—p-Atq—+h

.,

The top one has the right
operator precedence.

"

——-A - (A v B) - (A N B) -(A - B)
A -A A B -A vV —-B AN —B
~ TN

—((pAg)—oT)

—((pAq)—T)
—~pArtg—+h &

N—

Just to make it easier for us

to remember that, let's go and
add those parentheses into our

top-level formula.

~

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN B
-~ N

—((pAg)—oT)

N—

So now we can look at our
templates and see which one
applies.

"

——A -(A v B) -(A A B) . =(A - B) :
A —A N —B —Av-B | AA-B |
~ TN

—((pAg)—oT)

N—

Here, we're negating an

implication, so this rule applies.

"

-—-A -(A v B) —-(A A B) + =(A - B)
A —A N —B —Av-B | AA-B |
~ TN

—((pAqg)—oT)

N—

So we find the correspondence...

~

-—-A -(A v B) —-(A A B) : (A - B)
A ~A A —B ~Av-B | AA-B |
(PAQ A-=T o O

N—

...and apply the template!

"

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV -B AN B
(PAQ AT - O

That gives us this expression.

—_

——-A - (A v B) - (A N B) -(A - B)
A -~A A -B ~A Vv -B A A —B
DAGA-T o T

N—

We can actually drop the

parentheses here, since everything
is getting ANDed together and

AND is associative.

~

——-A - (A v B) - (A N B) -(A - B)
A -~A A -B ~A Vv -B A A —B
DAGA-T o T

At this point, we can't simplify
things any more, so we're
done!

— \/

——-A - (A v B) - (A N B) -(A - B)
A -~A A -B ~A Vv -B A A —B
DAGA-T ~ T

N—

As before, we should check our

work.

"

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A Vv -B A N-B
pAqgAN-T -)
Here's the original formula.
pANqg—T

N—

~

——-A - (A V B) - (A N B) - (A - B)
A —-A N B —-A VvV B AN-B
~ TN
(p A q A _'T') If we plug this expression into
VN the truth table tool, we can
see that these formulas are
(p A q —_ r') indeed negations of one another.

(Try it!)

N—

——-A - (A v B) - (A N B) -(A - B)
A -A AN 0B -A VvV -B AN—-B
pAqgAN-T -)
But, intuitively, why is that?
pAq—T

N—

~

——-A - (A v B) - (A N B) -(A - B)
A -A AN -B -A Vv -B A N-B
pDAQgAN-T o T
Notice that the original formula
(the one on the bottom) says
pANg—-T “p and q implies r.”

— \/

——-A - (A v B) - (A N B) -(A - B)
A -A AN -B -A Vv -B A N-B
pAQgA-T o T
That statement is going to be
true unless the antecedent
(p and q) is true and the
p A q — T consequent (r) is false.

N—

~

——A —-(A v B) —(A A B) -(A - B)
A -A AN -B -A Vv -B A N-B
DAQAN-T o)
So take a look at what our
negation (the top formula) says:
it says “p and q are true, butr
p A q — I is false.” It checks out!

— \/

——A —-(A v B) —(A A B) -(A - B)
A -A AN -B -A Vv -B A N-B
pDAQgAN-T o T
Before we do another example,
one detail that's worth noting is
that we didn't even touch the
p A q — I antecedent.

— \/

——-A - (A V B) - (A N B) - (A - B)
A -A AN -B -A Vv -B A N-B
pAQgAN-T o)
Notice that it's the same in both
the original formula and the
p N\ q - I negation.

—

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A VvV -B AN—-B
pAQgAN-T -)
When you're negating statements,
you don't necessarily negate
pANg—-T every part of them.

"~

——-A - (A V B) - (A N B) - (A - B)
A -A AN B -A VvV -B A N-B
DAQgAN-T .)
This is why these rules matter:
they show you what parts get
negated and what parts stay
p A q — I the same.

— \/

——-A - (A V B) - (A N B) - (A - B)
A -A AN B -A VvV -B AN—-B
~ TN
p A q N —r It's important to keep that in
mind - one of the more common
mistakes we see people make is
p A q — I negating way more than they

should.

— \/

——=A —l(A V B) —|(A A B) _'(A N B)
A -A AN =B -A VvV B A AN =B
PAQAN-—T - N
So, when in doubt, just keep
[I
pANqg-—oT applying the templates!

N—

~

——-A - (A v B) - (A N B) -(A - B)
A -A A B -A vV —-B AN —B
~ TN

With that said, let's do
another example.

— \/

——-A - (A v B) - (A N B) -(A - B)
A —-A AN B -A vV B AN B
p-q-r &)

How might we negate this
statement?

~

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN B
(p—>q—-r) o T

You know the drill! first we
parenthesize...

~

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN B
—.(p i r) ~ TN

...then we stick a negation
out front.

"

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN B
-(p->q-T) o T

Now we just need to apply
templates.

"

~-A ~(A v B) ~AAB) | =(A-B)
A -A A —B ~Av-B | AA-B |
—(p—=>qg—-T) ~)

N—

It should be clear that we need

to use this template for
implications, but how do we

apply it?

"

——-A - (A v B) - (A N B) -(A - B)
A -A N 0B -A VvV B AN-B
—.(p o r') ~ TN

“((p—q)—-1r) (?)
—“(p—->(q@—-1) ((?)

N—

Specifically, which of these

interpretations of the expression

are correct?

"

~-A ~(A vV B) ~(AAB) | -~(A-B)

A -A A —B —Av-B | AA-B

— ™~

Take a minute to review your
notes and make a guess.
Seriously, try it! It's a good
exercise.

~((p=q) -1 (?) ~
“(p-(q=1) () Val

—.(p—>q—>r)

~-A ~(A vV B) ~(AAB) | -~(A-B)

A -A A —B —Av-B | AA-B

— ™~

So you have a guess?
If not, go make one before
going on.

~((p=q) -1 (?) ~
“(p-(q=1) () Val

—.(p—>q—>r)

-—-A -(A v B) —-(A A B) + =(A - B)
A ~A A —B ~Av-B | AA-B |
-(p>q-r) ~)

=-€(19——>—q)——>—11)
—(p—(q—r1)

o}

N—

So this is the correct

interpretation. The —» operator

is right-associative.

~

——-A - (A v B) - (A N B) -(A - B)
A -A A B -A vV —-B AN —B
~ TN

—(p—>(gq—rn)

—(p—(q—r)

(_’.L)

N—

Let's go put those parentheses

in up here.

"

-—-A -(A v B) —-(A A B) + =(A - B)
A ~A A —B ~Av-B | AA-B |
~ TN

—(p—>(gq—rn)

N—

Okay! Now let's start applying

templates.

~

-—-A -(A v B) —-(A A B) + =(A - B)
A —A N —B —Av-B | AA-B |
~ TN

—(p—(gq—r)

N—

Color-coding the antecedent
and consequent lets us see
the structure...

~

-—-A -(A v B) —-(A A B) + =(A - B)
A ~A A —B ~Av-B | AA-B |
pA-(qg—T) o O

N—

...and makes it clear how we
push the negation inward.

~

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A Vv -B A N-B
pA—(qg—T) o O
Progress!
N—

"

—-—A - (A v B) —(A A B) - (A - B)
A ~A A —B ~AV —B AN-B |
pA-(qg—T) o O

Now, we can apply this
template another time.

—_

-—-A -(A v B) —-(A A B) —-(A - B)
A ~A A —B ~AV —B AN-B |
pA—(q—T) o
Before...
N—

-—-A -(A v B) —-(A A B) —-(A - B)
A —A N —B —A v —B AN-B |
DAQGgAN-T o)
...and after!

— \/

——-A - (A v B) - (A N B) -(A - B)
A —~A A -B ~A v -B A A —B
DAQGA-T o)

So we're done!

— \/

——-A - (A V B) - (A N B) - (A - B)
A -A AN -B -A Vv -B A N-B
~ TN
p A q AN —r Here's the original formula and
the ultimate negation. You can
(and should!) go check whether
p s q o 3 & this is right using the truth

table tool.

N

——-A - (A v B) - (A N B) -(A - B)
A -A N -B -A v -B A N B
pAqN-—T ~)
But hold on a second...
p—>dqq—Tr does this negation seem familiar?

N—

S

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A VvV -B AN—-B
pDAQgAN-T -)
Hopefully it does - we saw
earlier that it's the negation of
p—q—Tr pAq—T!

N—

~

——-A - (A v B) - (A N B) -(A - B)
A -A A 0B -A v =B A N B
DAQAN-T ~ TN
Thils is e?<citing, because it_ means
p—>q-Tr we just discovered something new!

N—

~

——A - (A V B) - (A N B) - (A - B)
A —-A AN B —-A VvV -B AN —-B

pDAQgAN-T o)

Since these two formulas have the
same negation, they must be
p —_ q - I equivalent to one another!
= \/
p—-q—-r = pAg-oT

——-A - (A v B) - (A AN B) —-(A - B)
A -A AN -B -A VvV -B A N-B
DAQgAN-T o)
This particular identity shows up
in a lot of places, actually.
p —_ q - I Curious? Come ask us about it!
= \/
p—-q—-r = pAg-oT

——-A - (A V B) - (A N B) - (A - B)
A -A A B -A vV —-B AN —B
~ TN

N—

Okay, so now we have a rule for

negating implications. Great!

~

——-A - (A v B) - (A N B) -(A - B)
A -A A B -A vV —-B AN —B
~ TN

Before we move on, there's
something important I'd like to
address.

— =~

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

—(A - B)

A AN —-B

— ™~

If you'll remember, in class we
saw this equivalence:

-(AANB) = A--B

1

——-A - (A v B) - (A N B) -(A - B)
A -A A B -A vV —-B AN —B
~ TN

N—

We can treat this as a new
template for negating AND:

- (A N B)

A_)_Iv

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

—(A N B)

— ~~

Let's add it to the list.

A - B

—_

——-A - (A v B) - (A N B) -(A - B)

A -A A =B -A vV =B A A -B
—(A N B)
A - —-B
~ TN

We now have two different rules
for negating ANDs.

— \/

——-A - (A v B) - (A N B) -(A - B)

A -A N 0B -A vV B AN B
—(A N B)
A - B
-~ N
'(A A B) © ('A \ _'B) We can use the truth table tool

to check that both of these
rules are correct. Just punch in

_'(A A B) © (A — —|B) the formulas to the left and
see what you get!
N—

——-A - (A v B) - (A N B) -(A - B)

A -A A =B -A vV =B A A -B
—(A N B)
A - —-B
~ TN

But what does it mean to have
two different rules lying around
for negating AND?

— \/

——-A - (A v B) - (A N B) -(A - B)

A -A A =B -A vV =B A A -B
—(A N B)
A - —-B
~ TN

This means that if we want to
negate an AND, we have two
different ways of doing it.

—

-(AvB) | =(AAB): -(A-B)
—AA-B | AV -B ! AN -B
—(A N B)

A - —-B

— ™~

This template uses de Morgan's
laws. It tends to be more useful
when working in propositional
logic.

—

- (A V B)

—-A AN =B

oEEEEEEEN

- (A N B)

-A vV —-B

—(A - B)

A AN —-B

—

N—

™~

This template is based on the
negation rule for implications.
It's more useful in first-order

logic.

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

—(A N B)

A - B

—(A - B)

A AN —-B

— ™~

Now that we have several
different negation rules available,
we can talk about a key property

of negations we've skipped up

to this point.

— \/

——-A - (A v B) - (A N B) -(A - B)
A —-A N B —-A VvV B AN —-B
—(A N B)
A - -B
DANQAT o)

Let's look at how to negate this
formula.

—_

——-A - (A v B) - (A N B) -(A - B)
A -A AN -B -A VvV B AN —-B
—(A N B)
A - -B
DAQAT ~ T

Before we go over this one
together, take a few minutes to
negate this one on your own.

— \/

——-A - (A v B) - (A N B) -(A - B)
A —-A N B —-A VvV B AN —-B
—(A N B)
A - -B
DANQAT -)

N—

Really, it's a good exercise.
Don't continue onward until
you've done that.

~

——-A - (A v B) - (A N B) -(A - B)
A —-A N B —-A VvV B AN —-B
—(A N B)
A - -B
DANQAT -)

N—

So you negated it? Good!
Great! Let's do it together.

~

——-A - (A v B) - (A N B) -(A - B)
A -A AN -B -A VvV B AN —-B
—(A N B)
A - -B
~(pAqAT) a O

N—

The first few steps should be
pretty routine by this point -
parenthesize and negate!

"

-—-A -(A v B) { ~(AAB) -(A -~ B)
A ~AA-B | -Av-B: AA-B
—(A N B)
. A->-B
-(pANQgAT) ~)

Now, we have a lot of different
options here. We have two
different templates for
negating AND...

— "~

--A -(AvB) | =(AAB): —(A-B)
A ~AAN-B | -Av-B! AA-B
. ~(AAB) |
. A->-B !
-(pANQgAT) o)

...and at the same time, there are
two equally correct ways of
parenthesizing this expression.

—((pA Q) AT

—(p A (@ A1) N— \/

--A -(AvB) | =(AAB): —(A-B)
A ~AAN-B | -Av-B! AA-B
. ~(AAB) |
. A->-B !
-(pANQgAT) o)

Depending on which templates
you use, and how you group
things, you may end up with

_'((P A\ CI) A T') totally different answers!

—(p A (@ A1) N— \/

s

—~-A —(A v B) ~(AAB): —(A-B)
A ~AAN-B | -Av-B! AA-B
—(A N B)
_A--B
~(pAQqAT) a O

—“((pAq) ANT)
—“(pAN(qAT))

Let's see what they look like.

~

N—

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN B
—(A N B)
A - B
—(p A (q A T)) a O

For starters, let's parenthesize
things like this.

— \/

—~=A ~(AvB) | =(AAB) —(A - B)
A ~-AN-B | —Av-B: AA\-B
—(A N B)
A - —-B
~ TN

—(p A (g AT))

N—

Let's use this first template.
We can be old-school.

~

—~=A ~(AvB) | =(AAB): -(A-B)
A -~AA-B | "Av-B:i! AnA-B
—(A N B)
A - —-B
~ TN

—(p A (g AT))

N—

Here's the “before” picture...

~

—~=A ~(AvB) | =(AAB): -(A-B)
A -~AA-B | "Av-B:i! AnA-B
—(A N B)
A - —-B
—p Vv =(q A T) a O

N—

... and the “after” picture.

~

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV -B AN B
—(A N B)
A - -B
—=pV —=(q AT a O

So now we have to simplify
the second part of this
expression.

— \/

——-A - (A v B) - (A N B) -(A - B)
A ~A A -B ~A Vv —B A A -B
{ ~AnrB)
A - —-B
—pV = (q AT))

Let's use this template.

~

-(A vV B) - (A AN B) - (A - B)

-A A —B -A v -B AN-—-B
. ~(AAB)
. A—>—-Bj

Before...

-(A vV B) - (A AN B) - (A - B)

—-A A =B -A v =B AN-B
. ~(AAB)
. A—>—-Bj

... and after!

— \/

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

—(A N B)

A - B

—(A - B)

A AN —-B

—p Vv (q— —r)

—

N—

™~

So this is one possible
formula we could arrive at as
the negation of the original
formula.

"

——-A - (A v B) - (A N B) -(A - B)
A -A N B -A vV -B AN B
—(A N B)
A - B
—=p VvV (q— —r) - O

This isn't all that easy to read.
Let's try negating it a different
way.

— \/

——-A - (A v B) - (A N B) -(A - B)
A -A AN =B -A VvV -B AN —-B
- (A N B)
A - -B
~ TN
_'(P AN gqA T') Resetting back to where we

N—

began...

~

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN —-B
—(A N B)
A - -B
~ TN

—((pAQg)AT)

N—

Let's parenthesize it like this.

~

- (A v B) - (A N B) -(A - B)

—A A —B -A Vv -B AN -B
~(A A B)
. A--B |

~ TN

—((pAQg)AT)

Now, let's use this template.

— \/

——-A - (A v B) - (A N B) -(A - B)
A -A A =B -A v -B A A -B
. =(ANB)
. A--B
~ TN

—((pAQg)AT)

N—

That groups things like this...

~

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A VvV -B A N-B
| ~AnrB)
_A--B
~ TN
p A q —

...giving us this result!

— \/

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A VvV -B AN—-B
—(A N B)
A - -B
~ TN
And we're done! That was
pAN{g——r pretty fast. And we now have

N—

a very different formula than
the first one!

~

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN B
—(A N B)
A - —-B
~ TN
pAN(d— —r Of course, this isn't the only

way you could do this.

—_

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN B
—(A N B)
A - B
~ TN
Let's see another one.
“(pAQAT)

— \/

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN —-B
—(A N B)
A - -B
~ TN

We'll group things this way.

— \/

—(p A (g AT))

- (A v B) - (A N B) -(A - B)

—A A —B -A Vv -B AN -B
~(A A B)
. A--B |

~ TN

Now, we'll apply this template.

— \/

—(p A (g AT))

——-A - (A v B) - (A N B) -(A - B)
A -A A =B -A v -B A A -B
. =(ANB)
. A--B
~ TN

=(p A (g AT))

N—

This groups things in a pretty
different way from before...

~

——-A - (A v B) - (A N B) -(A - B)
A —A AN B -A v -B AN B
. =(ANB)
A - —-B
~ TN
...S0 we e_nd up with something
p N —'(Cl A T') pretty different than before!

N—

~

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN —-B
—(A N B)
A - -B
~ TN

We still need to simplify that
second part.

—_

p—-(qAr)

- (A v B) - (A N B) -(A - B)

-A AN 0B -AV B AN B
. =(AAB)
_A--B
~ TN

Let's apply this template
again.

— \/

p—-(qAr)

- (A v B) - (A N B) -(A - B)

-A AN 0B -AV B AN B
. =(AAB)
_A--B
~ TN

That takes us from here...

—_

p—-(qAr)

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN B
. =(AAB)
_A--B
~
...to here.
p — q — |
N—

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN —-B
—(A N B)
A - -B
~ TN

And we're done! Another
totally valid negation.

—_

p—)q—)—lr'

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN —-B
—(A N B)
A - -B
~ TN

p—)q—)—lr'

Let's do one more.

"

——-A - (A v B) - (A N B) -(A - B)
A -A N 0B -A VvV B AN-B
—(A N B)
A - B
~ TN
We'll start here...
“(PAQqAT)

— \/

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN —-B
—(A N B)
A - -B
~ TN

—((pAQg)AT)

... and group things like this.

— \/

" S EEEEEEEEEEEEy N

——-A —(A v B) i —(A A B) ; —-(A - B)
A ~AA-B | "Av-B ! AA-B
—(A N B)
A - —-B
~ TN

—((pAQg)AT)

N—

Let's use the first template,
for a change.

~

" S EEEEEEEEEEEEy N

——-A —(A v B) i —(A A B) ; —-(A - B)
A ~AA-B | "Av-B ! AA-B
—(A N B)
A - —-B
~ TN

—((pAQg)AT)

Here's where we start...

—_

" S EEEEEEEEEEEEy N

——-A —(A v B) i —(A A B) ; —-(A - B)
A ~AA-B | "Av-B ! AA-B
—(A N B)
A - B
~ TN
...and where we end.
—“(pAq) VT

—_

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN —-B
—(A N B)
A - -B
~ TN

Now, we need to fix up that
first part.

—(pAQ)V T — \/

——A ~(AvB) | -(AAB) : -(A-B)

A -~AA-B | -Av-B ! AA-B
—(A N B)
A - B

~ TN
We'll use this template
again...
—(p A q)

—_

——A ~(AvB) | -(AAB) : -(A-B)
A -~AA-B | -Av-B ! AA-B
—(A N B)
A - -B
~ TN
...taking us from here...
~(p A q)

—_

——A ~(AvB) | -(AAB) : -(A-B)
A -~AA-B | -Av-B ! AA-B
—(A N B)
A - —-B
~
...to here.
“pVv g N—

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN —-B
—(A N B)
A - -B
~ TN

“pV -qV r

N—

And we're done!

A totally different, totally valid

negation.

~

——-A - (A v B) - (A N B) -(A - B)
A -A A -B -A VvV -B A AN =B
- (A N B)
A - B
=p VvV (q— —r) a I
For reference, here are all the
P)\ Cl — r statements you can get to using

p—q——r
—pV gV —r
p—(—qVv —r)
(p—=—q) Vv —r

N—

the above templates. Is your
answer on that list?

~

——-A - (A v B) - (A N B) -(A - B)
A -A AN B -A vV B AN B
—(A N B)
A - -B
—p V (q — —r) ~ Y
pAN(d— —r So why did we go through this

p—q——r
—“pV gV r
p—-(-qvVv —r)
(p—=—q) Vv —r

(admittedly lengthy) diversion?

—_

——-A - (A v B) - (A N B) -(A - B)
A —A AN 0B -AV B A AN =B
- (A AN B)
A - -B
p A q — =T Well, any of these formulas are

p—q——r
-pV gV —r
p—(—qVv —r)
(p—=—q) Vv —r

valid negations of the original
formula.

—

——-A - (A v B) - (A N B) -(A - B)
A -A N B —-A vV -B AN —-B
—(A N B)
A - —-B
—p V (q — —r) ~ T
pAN(d— —r However, as you can see, not all

p—q——r
—“pV gV r
p—-(-qvVv —r)
(p—=—q) Vv —r

of them are very easy to read.

N

——-A - (A v B) - (A N B) -(A - B)
A -A N B —-A VvV B AN-B
—(A N B)
A - B
~ TN
pAN(— —r We personally think that these two

“pV -qV r

are the cleanest of the negations.

—_

——-A - (A v B) - (A N B) -(A - B)
A —-A AN B —-A vV -B AN —-B
—(A N B)
A - —-B
~ TN
Although we've stressed the
pAN(— —r importance of working through

“pV -qV r

these negations using templates,
there still is a bit of an art to it.

N

——-A - (A v B) - (A N B) -(A - B)
A -A N B —-A VvV B AN-B
—(A N B)
A - —-B
~ TN
You'll sometimes have a choice
pAN{g——r about which templates to use,

“pV -qV r

and sometimes one choice will be
much better than the others.

Ny

——-A - (A v B) - (A N B) -(A - B)
A —-A AN B —-A vV -B AN —-B
—(A N B)
A - —-B
~ TN
Learning which rules to use takes
pAN(— —r some practice, but once you get

“pV -qV r

the hang of it, it's really not
too bad!

— \/

——-A - (A v B) - (A N B) -(A - B)
A -A AN =B -A vV B A AN B
- (A AN B)
A - —-B
~ TN
pANqg——r If you ever make an “inelegant”

—pV —=qV T

choice, just back up and choose
something else!

—

——-A - (A v B) - (A N B) -(A - B)

A -A A =B -A vV =B A A -B
—(A N B)
A - —-B
~ TN

To see this in action, let's talk
about how to negate biconditionals.

—_

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

—(A N B)

A - B

—(A - B)

A AN —-B

— ™~

Although we didn't talk about it
in class, there are two nice
rules you can use to negate

a biconditional.

— \/

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

—(A N B)

A - B

—(A - B) —(A < B)
AN-B -A - B
—(A < B)
A - B

—

N—

They're shown above. Basically,
you negate one side, leave the

™~

other alone, and leave the
connective unchanged.

~

——A —-(A v B) —(A A B) -(A - B) —-(A < B)
A -A AN B -A VvV -B AN—-B -A - B
- (A N B) (A < B)

~ TN

N—

(As an aside, the biconditional
is the only connective that doesn't
change when negated. Nifty!)

~

——A —-(A v B) —(A A B) -(A - B) —-(A < B)
A -A AN B -A VvV -B AN—-B -A - B
- (A N B) (A < B)

~ TN

(pAg)vre((gvr—p)

So let's put these new rules to
practice by negating the
statement to the left.

—

——A - (A v B) —(A A B) -(A - B) -(A - B)

A —-A N B —-A VvV B AN-B —-A - B
—(A N B) - (A < B)

— ™~

This one looks tricky! Don't
worry - it's not as bad as it
looks.

— \/

(pAg)vre((gvr—p)

——A —-(A v B) —(A A B) -(A - B) —-(A < B)
A -A AN B -A VvV -B AN—-B -A - B
- (A N B) (A < B)

~ TN

—“(((pAg)Vvr)e((gvr)—p))

We start off the same way that
we always do - parenthesize and
negate.

— =~

--A —-(A v B) —-(A A B) —-(A - B) { =(A~B)
A ~A A =B ~A vV —B A A —B . —AoB |
-(A A B) i “(A-B) |

~ TN

—“(((pAg)Vvr)e((gvr)—p))

N—

pick one of the two biconditional

Now, we need to apply some
template here, so we need to

templates.

~

——A —~(A v B) —~(A A B) ~A-B) { =(AeB):
A —~A A —B ~A Vv —B AN -B . —AoB |
-(A A B) i “(A-B) |

~ TN

—“(((pAg)Vvr)e((gvr)—p))

N—

Now, we have a choice. We can

either negate the left-hand
side or the right-hand side.

S

--A —~(A v B) —(A A B) ~(A-B) { -(A~B):
A ~A A -B ~A Vv -B ArN-B | -AoB |
-(A A B) i “(A-B) |

~ TN

—“(((pAg)Vvr)e((gvr)—p))

N—

Either way will work, but one
way is a lot easier than the

other.

——A - (A v B) - (A AN B) —-(A - B) —(A < B)
A -A AN -B -A Vv -B A N-B -A~ B
—(A N B) - (A < B)

~ TN

—“(((pAg)Vvr)e((gvr)—p))

Let's think a step ahead.

"

-—A ~(A v B) ~(A A B) ~A-B) {-(A-B):
A ~A A =B ~A VvV —B A A -B . —AoB |
-(A A B) i “(A-B) |
~ TN
((P A CI) vV T') If we negate this side,

N—

we're going to have to negate

the OR, and that's going to
require us to then negate the

AND.

--A —-(A v B) —-(A A B) -(A - B) { =(A~B)
A ~A A =B ~A vV —B A A —B . —AoB |
-(A A B) i “(A-B) |

((qvn-p) (. O

On the other hand, if we negate
this side, we just negate the
implication, which is going to

leave the OR unchanged.

— \/

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A N B -A VvV -B AN-B —-A - B
~(A A B) . =(A-B)

— ™~

As a result, let's try applying this
template, which negates the
left-hand side.

— \/

—“(((pAg)Vvr)e((gvr)—p))

-—A —-(A v B) —(A A B) —(A - B) —(A © B)
A —-A A -B -A Vv -B AN -B -A - B
—(A A B) —(A © B)

~ TN

—“(((pAg)Vvr)e((gvr) —p))

Here's the before shot...

"

-—A —-(A v B) —(A A B) —(A - B) —(A © B)
A —-A A -B -A Vv -B AN -B -A - B
—(A A B) —(A © B)

~ TN

(pAg)vr)e =((gvr)—p)

... and the after.

"

——A —-(A v B) —(A A B) -(A - B) —-(A < B)
A -A AN B -A VvV -B AN—-B -A - B
- (A N B) (A < B)

~ TN

=((q v r)—-p)

N—

So now we need to push this
negation deeper.

~

—=A -(A v B) —(A A B) : (A - B) ! —(A < B)
A —-A A -B -A Vv —-B : AN -B j -A - B
—(A N B) - (A < B)

~ TN

=((q v r)—-p)

N—

That's a relatively
straightforward application of
this template.

~

—(A v B) ~(AAB) | -(A-B): -(A<B)
-A A —B —Av-B | AA-B | -A - B
- (A N B) (A < B)

~ TN

—((qvr)—p)

So we color-code for
convenience...

—_

~-A ~(A v B) ~AAB) | -A-B)! -(A<B)
A -~A A -B -~A Vv -B AN-B | -A <~ B
—(A A B) —(A < B)
((@vna=-p (" I
...and simplify.

— \/

——A —-(A v B) —(A A B) -(A - B) —-(A < B)
A -A AN B -A VvV -B AN—-B -A - B
- (A N B) (A < B)

~ TN

(pAg)vr)e((@qvr) A -—p)

And bam! We're done.

~

——-A - (A v B) —-(A N B) - (A - B) —(A < B)
A -A N B -A VvV -B AN-B -A - B
- (A N B) (A < B)

-~ TN

(pAg)vr)e((@qvr) A -—p)

(pAg)vre((gvr—-p)

You can - and should - check
that this formula is correct by
using the truth table tool.
Here's the original as a reminder.

Ny

——A —-(A v B) —(A A B) -(A - B) —-(A < B)
A -A AN B -A VvV -B AN—-B -A - B
- (A N B) (A < B)

~ TN

N—

So wow! We've covered a lot
of ground. Let's recap.

~

——A —-(A v B) —(A A B) -(A - B) —-(A < B)
A -A AN B -A VvV -B AN—-B -A - B
- (A N B) (A < B)

~ TN

N—

We've recently introduced new
templates for negating
implications and biconditionals.

~

——A —-(A v B) —(A A B) -(A - B) —-(A < B)
A -A AN B -A VvV -B AN—-B -A - B
- (A N B) (A < B)

~ TN

N—

You've seen that there's also
a different way to negate
ANDs using implications.

"

——A —-(A v B) —(A A B) -(A - B) —-(A < B)
A -A AN B -A VvV -B AN—-B -A - B
- (A N B) (A < B)

~ TN

N—

And we touched a bit on the idea
that there's an art to choosing
these templates wisely.

~

——A —-(A v B) —(A A B) -(A - B) —-(A < B)
A -A AN B -A VvV -B AN—-B -A - B
- (A N B) (A < B)

~ TN

N—

That's basically everything we'd
like to say about negating
formulas in propositional logic.

"

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

—(A N B)

A - B

—(A - B) —(A < B)
AN-B -A - B
—(A < B)
A - B

—

N—

To wrap things up, let's talk about
how to negate first-order logic

follow the same basic set of rules.

™~

formulas. Don't worry! They

~

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

—(A N B)

A - B

—(A - B) —(A < B)
AN-B -A - B
—(A < B)
A - B

—

N—

Fundamentally, first-order logic

propositional logic. Structurally,

™~

is quite different from

though, it's still propositions
joined by connectives.

at

- (A V B)

—-A AN =B

- (A N B)

-A vV —-B

—(A N B)

A - B

—(A - B) —(A < B)
AN-B -A - B
—(A < B)
A - B

—

N—

The only major difference is the
introduction of quantifiers. Once
you know how to negate those,

™~

you can negate first-order
formulas with ease!

~

——A —-(A v B) —(A A B) -(A - B) —-(A < B)
A -A AN B -A VvV -B AN—-B -A - B
- (A N B) (A < B)

~ TN

N—

Let's see this with an example.

~

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A AN -B -A Vv -B AN-B -A - B
—(A A B) - (A < B)
A - —-B A~ -B
Vx. (Person(x) — -)
Hy (PQT'SOTl(y) ANy # XA Here's a formula from class.

Do you remember what this says?

Loves(x, y)

|) — \/

——A —-(A v B) —(A A B) -(A - B) —-(A < B)
A -A AN B -A VvV -B AN—-B -A - B
- (A N B) (A < B)

~ TN

Vx. (Person(x) -
Jy. (Person(y) Ay # X A
Loves(x, y)

)

N—

Let's see how to negate it.

~

——-A - (A v B) —-(A N B) - (A - B) —(A < B)
A -A N B -A VvV -B AN-B -A - B
- (A N B) (A < B)

-~ TN

-Vx. (Person(x) —

Jy. (Person(y) Ay # X A

Loves(x, y)

N—

As before, we put a negation
at the front. (Since this whole
formula is controlled by the
quantifier, we don't need to
parenthesize it.)

Nt

——A - (A v B) —(A A B) -(A - B) -(A - B)

A —-A AN -B -A VvV —-B A AN —-B -A o B
—(A N B) - (A < B)
-Vx. (Person(x) — ~ S
Now, we need some kind of
Hy (PerSOn(y) A y 7= X A template for simplifying this
LOVQS(X, y) expression.

|) — \/

——-A - (A v B) —-(A N B) - (A - B) —(A < B)
A -A N B -A VvV -B AN-B -A - B
- (A N B) (A < B)

-~ TN

-Vx. (Person(x) —

Jy. (Person(y) Ay # X A

Loves(x, y)

If you'll remember from lecture,
we saw how to negate quantifiers:
push the negation across the
guantifier, then flip the quantifier.

Ny

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A AN B -A VvV B AN B -A <~ B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. "A
—-Vx. (Person(x) — ~)

Jy. (Person(y) A y # X A
Loves(x, y)

|) — \/

Those rules look like this.

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A AN B -A VvV B AN B -A <~ B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. "A
-Vx. (Person(x) — ~)

Jy. (Person(y) Ay # X A
Loves(x, y)

|) — \/

So let's go apply them!

——-A - (A V B) - (A N B) - (A - B) - (A < B)
A -A AN B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —-3x. A
dx. -A Vx. DA
~ TN

-Vx. (Person(x) —
Jy. (Person(y) A y # X A
Loves(x, y)
)

Here, we can apply this template.

N—

~

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A AN B -A VvV B AN B -A <~ B
—(A N B) - (A < B)
—Vx. A —dx. A
dx. -A Vx. "A
—-Vx. (Person(x) — ~ Y

Jy. (Person(y) Ay # X A
Loves(x, y)

|) — \/

That looks like this...

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A AN B -A VvV B AN B -A <~ B
- (A N B) (A < B)
—Vx. A —dx. A
dx. -A Vx. "A
Ix. = (Person(x) — ~)

Jy. (Person(y) Ay # X A
Loves(x, y)

|) — \/

...50 we end up here.

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

dx. = (Person(x) —
Jy. (Person(y) Ay # X A

)

Loves(x, y)

That's progress!

~

dx. = (Person(x) —

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

Jy. (Person(y) Ay # X A

)

Loves(x, y)

N—

Now, how do we continue?

~

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

dx. = (Person(x) —

Jy. (Person(y) Ay # X A

Loves(x, y)

)

N—

negation applied to an implication.

Well, notice that we have a

~

~-A ~(A vV B) ~(A A B) ~A—-B) ! =(AoB)
A A A —B AV —B AN-B | -A-B
—(A N B) - (A < B)
-Vx. A —-dx. A
dx. "A Vx. -A
dx. = (Person(x) — ~)
Hy (PQT'SOTl(y) ANy # XA Well, notice that we have a

Loves(x, y)

)

N—

negation applied to an implication.

~

~—A ~(A vV B) ~(A A B) ~A—-B) ! =(AoB)
A A A —B AV —B AN-B | -A-B
- (A N B) (A < B)
-Vx. A —-dx. A
dx. "A Vx. -A
Ix. = (Person(x) — ~)
Hy (PQT'SOTl(y) N\ A Z X AN That suggests we should use this

Loves(x, y)

)

template.

—_

—~=A —(A v B) ~(AAB) | -(A-B): -(A<B)
A -~A A -B -~A Vv -B AN-B | -A <~ B
—(A A B) —(A < B)
—Vx. A —dx. A
dx. A Vx. "A
~ TN

dx. = (Person(x) —
Jy. (Person(y) Ay # X A
Loves(x, y)

N—

consequent, in case that makes

Here's the antecedent and

things clearer.

"

—~=A —(A v B) ~(AANB) | -(A-B) ! -(AeB)

A -A A -B ~Av-B | AA-B | -AoB
—(A A B) —(A < B)
—Vx. A —dx. A
dx. -A Vx. -A
Ix. ~(Person(x) — ~ T

Jy. (Person(y) Ay # X A
Loves(x, y)

|) N— \/

Applying the rule...

—~=A —(A v B) ~(AANB) | -(A-B) ! -(AeB)

A -A A -B ~Av-B | AA-B | -AoB
—~(A A B) —~(A o B)
—Vx. A —dx. A
Ix. A Vx. A
Ix. (Person(x) A ~ T

—dy. (Person(y) Ay # X A
Loves(x, y)

|) N— \/

...gives us this.

——A - (A v B) —(A A B) -(A - B) -(A - B)

A —-A AN B -A VvV B AN -B —-A - B
- (A N B) (A < B)
—Vx. A —dx. A
dx. A Vx. A
Ix. (Person(x) A ~)

—dy. (Person(y) Ay # X A
Loves(x, y)

|) — \/

Cool!

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A N B -A VvV -B AN-B -A - B
—(A A B) -(A « B)
—Vx. A —dx. A
dx. —A Vx. A
dx. (Person(x) A -)
_'Ely (PQT'SOTl(y) ANy # XA It's just a matter of repeating

this process until we're done.

Loves(x, y)

|) — \/

-=A -(A v B) —(A A B) -(A - B) —-(A © B)
A —-A A -B -A Vv -B A\ -B -A - B
- (A N B) (A < B)
~Vx. A | -IxA
dx. —A Vx. A
~ TN

dx. (Person(x) A
—3y. (Person(y) Ay # X A
Loves(x, y)
)

Here we have a negated
existential statement...

~

——A - (A v B) —(A A B) -(A - B) -(A - B)

A —-A AN B -A VvV B AN -B -A <~ B
—(A N B) - (A < B)
—Vx. A —dx. A
dx. -A Vx. "A
Ix. (Person(x) A ~)

Vy. =(Person(y) A y # X A
Loves(x, y)

|) — \/

...which simplifies like this.

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A AN -B -A Vv -B A N-B -A~ B
—(A N B) - (A < B)
—Vx. A —dx. A
dx. =A Vx. —A
3x. (Person(x) A - Y
Great! Now, we have a negated
Vy _'(PerSOn(y) ANy # XA AND. It's a three-way AND,

actually, but fortunately we've

LOVQS(X; y) seen lots of ways to handle this!

|) — \/

-=A —-(A v B) -(A A B) -(A - B) (A < B)
A -A A =B -A v =B AN -B -A < B
| =(AnB) ~(A B)
. A->-B | A - -B
—Vx. A —dx. A
dx. A Vx. A
~ TN

dx. (Person(x) A
Vy. = (Person(y) Ay # X A
Loves(x, y)

While we can use any template
we'd like here, when dealing with
first-order logic, it's often
useful to use this rule, which
turns ANDs into implications.

N—

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A A -B -A v =B A A -B -A - B
. =(ANB) ~(A & B)
A- =B A - =B
—Vx. A —dx. A
dx. -A Vx. "A
Ix. (Person(x) A ~)

Vy. =(Person(y) A y # X A
Loves(x, y)

|) — \/

We'll group things like this...

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A A -B -A vV -B AN -B -A - B
—-(A A B) -(A o B)
A-=-B Ao —B
—Vx. A —dx. A
dx. -A Vx. A
Ix. (Person(x) A ~)

Vy. (Person(y) ANy # x =
—Loves(x, y)

|) — \/

... which gives us this as a result.

——A - (A v B) —(A A B) -(A - B) -(A - B)

A —-A AN B -A VvV B AN -B —-A - B
- (A N B) (A < B)
—Vx. A —dx. A
dx. A Vx. A
Ix. (Person(x) A ~)

Vy. (Person(y) ANy # x =
—~Loves(x, y)

|) — \/

And now we're done!

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

dx. (Person(x) A
Vy. (Person(y) ANy # X =
—~Loves(x, y)
)

So how can we check whether
this is right?

—_

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ N

dx. (Person(x) A
Vy. (Person(y) ANy # x =
—~Loves(x, y)

When dealing with propositional
logic, we could just plug our
result into the truth table tool.

N

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ N

dx. (Person(x) A
Vy. (Person(y) ANy # x =
—~Loves(x, y)

Unfortunately, first-order logic

doesn't have truth tables, so

that particular approach isn't
going to work.

—

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ N

dx. (Person(x) A
Vy. (Person(y) ANy # x =
—~Loves(x, y)

It

N—

turns out, more generally, that
it is objectively hard to check

whether one first-order formula

is the negation of another.

~

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ N

dx. (Person(x) A
Vy. (Person(y) ANy # x =
—~Loves(x, y)

N—

You know how we've been talking
about problems so hard that they
can't be solved by a computer?

This is one of them!

~

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

dx. (Person(x) A
Vy. (Person(y) ANy # X =
—~Loves(x, y)
)

We're not going to talk about
that in CS103. Take Phil 152 or
CS154 for details!

—

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A N B -A VvV -B AN-B -A - B
—(A N B) - (A < B)
—Vx. A —dx. A
dx. =A Vx. —A
Ix. (Person(x) A - T
So if there's no simple way to
Vy (PQT'SOTl(y) ANy#X—o confirm that we have the right

answer, how do we know that

_'LOVQS(X; y) we've gotten it right?

|) — \/

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

dx. (Person(x) A
Vy. (Person(y) ANy # X =
—~Loves(x, y)
)

At some level, we have to trust
that we applied the templates
correctly.

—

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ N

dx. (Person(x) A
Vy. (Person(y) ANy # X =
—~Loves(x, y)
)

However, we still can do a few
quick checks to make sure we
didn't mess anything up.

—

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ N

dx. (Person(x) A
Vy. (Person(y) ANy # X =
—~Loves(x, y)
)

N—

For example, we know that
V is (usually) paired with -

and that 3 is (usually) paired with

A.

~

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A AN B -A VvV -B AN—-B -A - B
—(A N B) - (A < B)
—Vx. A —dx. A
dx. =A Vx. —A
~ TN
EIX- (PQT'SOTI(X) A A great way to check your work
N is to make sure that you didn't
Vy (PQT'SOTl(y) A y # X break that rule. If you broke the
—|LOVQS(X’ y) rule, chances are you made a
) mistake somewhere.

) —

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

dx. (Person(x) A
Vy. (Person(y) Ay # X —
—~Loves(x, y)
)

Here, notice that we do indeed
obey the rules.

—_

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

dx. (Person(x) A
Vy. (Person(y) Ay # X —
—~Loves(x, y)
)

N—

didn't make any major mistakes.

This is a good sign that we

~

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A AN -B -A Vv -B A N-B -A~ B
—(A N B) - (A < B)
—Vx. A —dx. A
dx. —A Vx. A
3x. (Person(x) A o)
To check whether we really have
Vy (PQT'SOTl(y) ANy#X—o it, it's often useful to translate

the original and negated statements

_'LOVQS(X; y) into English and to check those.

|) — \/

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

dx. (Person(x) A
Vy. (Person(y) ANy # X =
—~Loves(x, y)
)

N—

“there is someone that doesn't

This statement says

love anyone else.”

~

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A N B -A VvV -B AN-B -A - B
—(A A B) —(A < B)
—Vx. A —dx. A
dx. —A Vx. A
Vx. (Person(x) — -)
Hy (PQT'SOTl(y) ANy # XA Here's our original

formula.

Loves(x, y)

|) — \/

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A AN -B -A Vv -B A N-B -A~ B
—(A A B) —(A < B)
—Vx. A —dx. A
Ix. A Vx. A
Vx. (Person(x) — -)
Hy (PQT'SOTl(y) ANy # XA This says “everyone loves

someone else.”

Loves(x, y)

|) — \/

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A AN -B -A Vv -B AN-B -A - B
—(A A B) —(A < B)
A - B A o B
—Vx. A —dx. A
dx. —A Vx. A
dx. (Person(x) A -)
Vy (PQT'SOTl(y) ANy#X—o (Let's reset back to the

negated formula.)

—~Loves(x, y)

|) — \/

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

dx. (Person(x) A
Vy. (Person(y) ANy # X =
—~Loves(x, y)
)

The two translations are indeed
negations of one another.

—_

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ N

dx. (Person(x) A
Vy. (Person(y) ANy # x =
—~Loves(x, y)

N—

If everyone loves someone else,
there's no way that there could

be a person who doesn't love
anyone else.

~

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ N

dx. (Person(x) A
Vy. (Person(y) ANy # x =
—~Loves(x, y)

Similarly, if there's someone who
doesn't love anyone else, then
it's definitely not the case that
everyone loves someone else.

Ny

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

dx. (Person(x) A
Vy. (Person(y) ANy # X =
—~Loves(x, y)
)

N—

So overall we should be pretty

confident that we've properly
negated our formula.

~

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ N

dx. (Person(x) A
Vy. (Person(y) ANy # x =
—~Loves(x, y)

N—

tests, and also intuitively syncs
up with what the formulas mean.

It passes our basic structural

~

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ N

dx. (Person(x) A
Vy. (Person(y) ANy # x =
—~Loves(x, y)

N—

Before we move on, | wanted to
touch on one question: why did

template to negate the ANDs here?

we use the “AND-to-implies”

~

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

dx. (Person(x) A
Vy. (Person(y) ANy # X =
—~Loves(x, y)
)

To answer that, let's roll back
the clock to the point where we
made that choice.

— "~

——A - (A v B) —(A A B) -(A - B) -(A - B)

A —-A AN B -A VvV B AN -B —-A - B
- (A N B) (A < B)
—Vx. A —dx. A
dx. A Vx. A
Ix. (Person(x) A ~)

Vy. =(Person(y) Ay # X A
Loves(x, y)

|) — \/

Here we are!

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

dx. (Person(x) A

Vy. =(Person(y) A y # X A

Loves(x, y)

Now, we saw a number of ways
that we can negate a three-way
AND. (It's almost like we
did that example intentionally

to set this discussion up!)
N—

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A N B -A VvV -B AN-B -A - B
- (A N B) (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
Ix. (Person(x) A ~ S
Let's apply de Morgan's laws
Vy —-(Person(y) A y 7= X A here, using the rule that
Loves(x, y) ~“(AANBAC)=-AV BV -C

|) — \/

——A - (A v B) —(A A B) -(A - B) -(A - B)

A —-A AN B -A VvV B AN -B —-A - B
- (A N B) (A < B)
—Vx. A —dx. A
dx. A Vx. A
Ix. (Person(x) A ~)

Vy. (mPerson(y) Vv -y # X V
—~Loves(x, y)

|) — \/

That gives us this result.

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ N

dx. (Person(x) A
Vy. (mPerson(y) Vv -y # X V
—~Loves(x, y)
)

N—

know this because we applied valid
rules the whole way through...

So this result is correct - we

S

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ N

dx. (Person(x) A
Vy. (mPerson(y) Vv -y # X V
—~Loves(x, y)

N—

this statement. That quantifier
reads “any y either isn't a person,

...but it's a lot harder to read

or is equal to x, or x doesn't
love y.”

~

——A - (A v B) —(A A B) -(A - B) -(A - B)

A —-A AN B -A VvV B AN -B -A <~ B
—(A N B) - (A < B)
—Vx. A —dx. A
dx. -A Vx. "A
Ix. (Person(x) A ~)

Vy. (mPerson(y) Vv -y # X V
—~Loves(x, y)

|) — \/

That's quite a mouthful.

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ N

dx. (Person(x) A
Vy. (mPerson(y) Vv -y # X V
—~Loves(x, y)

Plus, this breaks the usual pattern
of V getting paired with -,
which makes it harder to check.

N

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ N

dx. (Person(x) A
Vy. (mPerson(y) Vv -y # X V
—~Loves(x, y)

N—

One of the reasons why the “AND-
to-implies” rule is so useful is that
it preserves which connectives

pair with which quantifiers.

~

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ N

dx. (Person(x) A
Vy. (mPerson(y) Vv -y # X V
—~Loves(x, y)

N—

This is why we recommend that

with AND and instead go with the

you not use de Morgan's laws

other route. It's just a lot

easier!

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

N—

Having said that, let's go and
do another, more complex
example.

~

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A AN B -A Vv -B AN —-B -A - B
- (A N B) (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
VS. VT. (Set(S) A Set(T) - o T
(S = T o Vx (X €S o x E T)) Here's a formula from set
) theory. Before we go on, can
) you translate this into English?

N

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ N

VS. VT. (Set(S) A Set(T) -
(S=TeVx.(x€SexeT)

N—

This says “any two sets are

equal if and only if they have the
same elements.” If you're not sure
why, dive into this and see if you

can convince yourself!

Nt

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

VS. VT. (Set(S) A Set(T) —
(S=ToVx.(xeESeoxeT))
)

N—

Let's see how to negate this.

~

——A - (A v B) —(A A B) -(A - B) -(A - B)

A —-A AN B —-A vV -B AN —-B -A B
—(A A B) —(A < B)
-Vx. A —3dx. A
dx. A Vx. "A
VS. VT. (Set(S) A Set(T) - ~ ~
— - PR Actually, let's not! Let's begin
(S T VX. (X S S X € T)) by having you take a stab at it.
) Try negating this one!

—

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

VS. VT. (Set(S) A Set(T) —
(S=ToVx.(xeESeoxeT))
)

N—

Seriously, go try to negate it.
Don't keep reading until you

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ N

VS. VT. (Set(S) A Set(T) -
(S=TeVx.(x€SexeT)

So you negated it? Like, really?
Because once you see us do it
you'll never get to experience the
thrill of discovering it yourself.

N

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A A -B -A v -B AN -B ~A - B
- (A N B) (A < B)
A - B A o B
-Vx. A —-dx. A
dx. 1A Vx. DA
VS. VT. (Set(S) A Set(T) - ~)

(S=TeVx.(x€SexeT)

Okay! So let's do this!

—_

)

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ N

—-VS. VT. (Set(S) A Set(T) —
(S=TeVx.(x€SexeT)

N—

Let's begin by putting a
negation at the front. Again,
since the whole statement is

quantified, we can pass on the

parentheses.

Nt

-=A -(A v B) —(A A B) -(A - B) —-(A © B)
A —-A A -B -A Vv -B A\ -B -A - B
- (A N B) (A < B)
C v A P -dxA
dx. —A Vx. A
~ TN

—-VS. VT. (Set(S) A Set(T) —
(S=TeVx.(x€SexeT)

We now have something matching
this template, so let's go

apply it!

N—

~

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A AN 0B -A vV 0B AN -B -A~B
—(A N B) - (A < B)
A - B A o B
TV A ~3x. A
Ix. 1A Vx. 1A
—-VS. VT. (Set(S) A Set(T) — ~ T
(S=ToVVx.(xe€SoxeT)) Sefore.
)
)

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A AN 0B -A VvV 0B AN-B -A - B
- (A N B) (A < B)
A - B A~ B
T v A ~3Ix. A
Ix. 1A Vx. 1A
3S. =VT. (Set(S) A Set(T) — ~ T

(S=TeVx.(x€e€SexeT)

... and after!

—_

)

-=A -(A v B) —(A A B) -(A - B) —-(A © B)
A —-A A -B -A Vv -B A\ -B -A - B
- (A N B) (A < B)
C v A P -dxA
dx. —A Vx. A
~ TN

31S. VT, (Set(S) N Set(T) -
(S=TeVx.(x€SexeT)

N—

We can now apply this template

a second time to this next
quantifier.

~

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A AN 0B -A VvV 0B AN-B -A - B
- (A N B) (A < B)
A - B A~ B
T v A ~3Ix. A
Ix. 1A Vx. 1A
3S. =VT. (Set(S) A Set(T) — ~ T

(S=TeVx.(x€e€SexeT)

Before...

)

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A AN 0B -A VvV 0B AN-B -A - B
- (A N B) (A < B)
A - B A~ B
T v A ~3Ix. A
Ix. 1A Vx. 1A
3S. 3T. =(Set(S) A Set(T) — ~ T

(S=TeVx.(x€e€SexeT)

... and after!

—_

)

~-A ~(A vV B) ~AAB) | -A-B)! -(A<B)
A —-A A -B -A Vv —-B A A -B j -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. 1A Vx. DA
~ TN

3S. 3dT. = (Set(S) A Set(T) —
(S=TeVx.(x€SexeT)

N—

We now have a negation
lined up against an
implication, so let's go and
apply this template.

~

—~=A —(A v B) ~(AANB) | -(A-B): -(AeB)

A —A A -B ~A v -B AN-B | -A < B
—(A N B) - (A < B)
A - B A o B
-Vx. A —-dx. A
Ix. 1A Vx. 1A
3S. 3T. =(Set(S) A Set(T) — ~ T

(S=TeVx.(x€e€SexeT)

Before...

)

—~=A —(A v B) ~(AANB) | -(A-B): -(AeB)

A —~A A -B ~A Vv -B AN-B | —~A < B
—(A N B) - (A < B)
A - B A o B
-Vx. A —-dx. A
Ix. 1A Vx. 1A
3S. 3T. (Set(S) A Set(T) A ~ T

(S=ToVx.(xe€SexeT))

... and after!

— \/

)

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

31S. 3T. (Set(S) N Set(T) A
(S=ToVx.(xe€ESeoxeT))
)

N—

Now our negation is sitting
in front of a biconditional.

~

-—A ~(A v B) —~(A A B) ~(A->B) | =(AeoB)
A ~A A =B ~A VvV —B A A -B . -AoB
~(A A B) i —(A o B)
A e —|B i‘ A > —|B M
-Vx. A —dx. A
dx. 1A Vx. DA
~ TN

31S. 3T. (Set(S) N Set(T) A
(S=ToVx.(xe€ESeoxeT))

That means we have two choices
of which template to apply.

—_

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

31S. 3T. (Set(S) N Set(T) A

)

(S=ToVx.(xe€ESeoxeT))

N—

practice with that one earlier?

But hey! Didn't we do some

~

A ~AVB) -(AAB) -(A-B) { -(A-B):
A -A AN -B -A VvV B AN-B —“A - B
—-(A A B) . ~(A-B)
—|VXA _|3XA
HX_ —|A VX. _'A
~ T

31S. 3T. (Set(S) N Set(T) A
(S=ToVx.(xe€ESeoxeT))

One of the lessons we took from
that was that it's often useful
to look at which half would be

easier to negate.

— \/

--A -(A v B) —(A A B) ~A->B) { =(AeoB):
A ~AAN-B -AV-B AN-B | -AoB |
-(A A B) i =(AoB) !
—Vx. A —dx. A
dx. =A Vx. —A
~ TN
S=T This half would be pretty easy

to negate - we just change the
= to a #.

N—

~

A ~AVB) -(AAB) -(A-B) { -(A-B):

A ~A A -B ~A Vv —-B AN-B | -AoB |

-(A A B) i =(AoB) !
—Vx. A —dx. A
dx. -A Vx. "A

~ TN
This half would be a lot harder
VX. (X ESoxE T) to negate - we'd have to push

the negation across the quantifier,
then handle another biconditional.

N

——-A - (A V B) - (A N B)

—(A - B)

A
>
!
=

A -A A —B -A v —-B ArN-B | -A-B |
- (A N B) (A < B)
—Vx. A —dx. A
Ix. A Vx. A
~ TN

31S. 3T. (Set(S) N Set(T) A
(S=ToVx.(xe€ESeoxeT))

Based on that, it makes a lot
more sense to negate the first
half of this biconditional, not the
second.

—

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

31S. 3T. (Set(S) N Set(T) A
(S=TeoVx. (xeSexeT))
)

N—

So we'll apply this template...

~

—~=A —(A v B) —(A A B) -(A-B) | ~(AoB)

A -A A -B -A vV =B AN —B -A < B
—(A N B) - (A < B)
A - B A o B
—Vx. A —dx. A
dx. A Vx. A
3S. 3T. (Set(S) A Set(T) A -)

(SZ2TeVx.(xeESeoxeT)

...giving us this result.

— \/

)

——A - (A V B) - (A N B) - (A - B) r (A - B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

31S. 3T. (Set(S) N Set(T) A
(SZ2TeoVx.(x€SexeT)
)

N—

Does this match what you had?

And at this point, we're done!

~

~-A ~(A v B) ~(A A B) ~A-B) | =(A~B)
A —A A -B —A Vv -B A A -B . "A~B |
—(A N B) - (A < B)
—Vx. A —dx. A
Ix. -A Vx. -A
~ TN

31S. 3T. (Set(S) N Set(T) A
(SZ2TeoVx.(x€SexeT)

N—

second half of the biconditional

You might have negated the

rather than the first.

~

—~=A —(A v B) —(A A B) -(A-B) | ~(AoB)

A -A AN B -A VvV B AN B -A - B
- (A N B) (A < B)
A - —B A< —B
—Vx. A —dx. A
dx. A Vx. A
3S. 3T. (Set(S) A Set(T) A -)
(S = T o Vx. (X €ES o X E T)) If you did, you'd get something
) like this instead.

N—

31S. 3T. (Set(S) N Set(T) A

(S=TeIx.(xXESox&T)
)

—~=A —(A v B) —(A A B) -(A-B) | ~(AoB)

A -A A —B -A v —-B Arn-B | -AoB
—-(A N B) (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
3S. 3T. (Set(S) A Set(T) A . D
you did this, no worries!
(S #= T o Vx. (X ESeoxE€E T)) You're still correct. We just
) think this is a harder route to
go down.

N
3S. 3T. (Set(S) A Set(T) A \/

(S=TeIx.(xXESox&T)
)

——-A - (A v B) —-(A N B) - (A - B) —(A < B)
A -A AN -B -A VvV -B AN-B -A - B
—(A N B) - (A < B)
—Vx. A —dx. A
dx. =A Vx. —A
~ TN
Let's do one final example

before moving on to our

last topic.

~

(Vx.

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

Happy(x)) — (3y. Happy(y))

N—

How might you negate this

formula?

~

(Vx.

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

Happy(x)) — (3y. Happy(y))

As before, take a few minutes
to work through this one on
your own time. See what you
come up with!

— \/

(Vx.

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

Happy(x)) — (3y. Happy(y))

You know the drill. This slide
is here to make sure that you
actually did that work and didn't
just skip by it.

— \/

(Vx.

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

Happy(x)) — (3y. Happy(y))

N—

Okay! So let's go negate this.

~

(Vx.

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

Happy(x)) — (3y. Happy(y))

N—

This formula is quite different
from the previous two in a subtle

way.

~

(Vx.

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

Happy(x)) — (3y. Happy(y))

The two previous formulas we
looked at were formulas that
were quantified at the top level.

NS

(Vx.

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

Happy(x)) — (3y. Happy(y))

N—

By that, we mean that those
formulas were of the form
Vx. A or 3dx. B.

S

(Vx.

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ N

Happy(x)) — (3y. Happy(y))

This formula, on the other hand,
is an implication where both the
antecedent and consequent use
quantifiers. However, the whole

formula is not quantified.

R

(Vx.

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ N

Happy(x)) — (3y. Happy(y))

This means that, when we start
off, we'll fully parenthesize the
expression and negate it, rather
than just tacking a negation
up-front.

— \/

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

—((Vx. Happy(x)) = (3y. Happy(y)))

N—

Here's what this now looks like.

~

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A AN 0B -A vV B A N 0B -A < B
—(A N B) - (A < B)
A - -B A o -B
-Vx. A —3dx. A
dx. A Vx. "A
- ((Yx. Happy(x)) = (Qy. Happy®))) (~ T

Notice that we now have a
negation applied to an implication.

NS

—=A -(A v B) —(A A B) : (A - B) ! —(A < B)
A —-A A -B -A Vv —-B : AN -B j -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. 1A Vx. DA
~ TN

—((Vx. Happy(x)) —» (y. Happy(y)))

N—

this template, just as we normally

That means that we'll use

do.

"

—~=A —(A v B) ~(AAB) | -(A-B): -(A<B)
A —-A A -B -A Vv —-B : AN -B j -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. 1A Vx. DA
~ TN

= ((Vx. Happy(x)) = (3y. Happy(y)))

Here are the antecedent and

conseqguent - each of which is

a bit complicated. If we apply
the template...

—

—~=A —(A v B) ~(AANB) | -(A-B): -(AeB)

A -A A -B ~Av-B | Ar-B | -AoB
-(A A B) —(A < B)
—Vx. A —dx. A
dx. A Vx. A
(Vx. Happy(x)) A =(3y. Happy(y)) (O

... we end up here.

— \/

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

(Vx. Happy(x)) A =(3y. Happy(y))

All that's left to do is push
the negation across the

quantifier.

"

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

(Vx. Happy(x)) A =(3y. Happy(y))

That means we apply this
rule...

— \/

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN-B -A B
—(A N B) - (A < B)
A - —B A< —B

Vx. A oI A

dx. A Vx. A
(Vx. Happy(x)) A (Yy. ~Happy(y)) (O
...like this!
N

~

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

(Vx. Happy(x)) A (Vy. =Happy(y))

N—

And now we're done. Nifty!

"

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~

(Vx. Happy(x)) A (Vy. =Happy(y))

We included this example so that
you'd see that, when dealing with
first-order logic, you still have
to follow all the regular rules
for negating statements.

N—

Nt

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

(Vx. Happy(x)) A (Vy. =Happy(y))

You have to be careful to make
sure that you don't negate
everything, and that you figure
out what the top-level
structure is.

N—

Nt

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

N—

So we're almost done! We're
going to do one last example.

~

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

As you saw in lecture, sometimes
we allow for quantifiers over sets.

—_

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
~ TN

VxeS.dyeS. x=#y

This means that you might see
formulas like this one.

—_

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A AN B -A VvV B AN B -A <~ B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. "A
VX €ES. Iy ES. x#y o)

How do you negate formulas
like these?

—_

——A - (A V B) - (A N B) - (A - B) - (A < B)
A -A N 0B -A VvV B AN B -A - B
—(A N B) - (A < B)
-Vx. A —dx. A
dx. -A Vx. DA
-~ TN

VxeS.dyeS. x=#y

N—

The good news is that the rules
for negating these “set quantifiers”
are basically the same as the rules

for negating the regular
quantifiers.

Nt

——=A - (A V B) - (A N B) - (A - B) - (A < B)
A -A AN B -A VvV -B A N B -A <~ B
- (A N B) (A < B)
A - =B Ao =B

-Vx. A —dx. A -Vx €S. A —-dx € S. A

dx. -A Vx. DA dx € S. -A Vx € S. A

VxeS.dyeS. x=#y

—

N—

™~

I've included them here. You
just push the negation across
the quantifier and flip which
quantifier you're using.

~

——=A - (A V B) - (A N B) - (A - B) - (A < B)
A -A AN B -A VvV -B A N B -A <~ B
—(A N B) - (A < B)
A - =B Ao =B
-Vx. A —dx. A -Vx €S. A —-dx € S. A
dx. -A Vx. DA dx € S. -A Vx € S. A
~ TN

VxeS.dyeS. x=#y

N—

Based on that, let's finish

this one off and go home. ~_ ©

"

——=A - (A V B) - (A N B) - (A - B) - (A < B)
A -A AN B -A VvV -B A N B -A <~ B
- (A N B) (A < B)
A - =B Ao =B

-Vx. A —dx. A -Vx €S. A —-dx € S. A

dx. -A Vx. DA dx € S. -A Vx € S. A

—Vx e€S.dyeS. x=zy

—

N—

™~

We begin - as we are wont to
do - by putting a negation
in front.

"

——A - (A v B) —(A A B) -(A - B) -(A - B)

A -A A —B -A v -B AN-B -A - B
—(A N B) - (A < B)
-vx. A ~I. A i-¥x€S.A! -IxeS.A
Ix. ~A Vx. A 1Ix€S. ~A! VxeS. -A
~ TN

—Vxe€S.dJyeS. x=y

We match this template,
so let's go apply it!

— \/

——A - (A v B) —(A A B) - (A - B) —(A < B)

A -A A -B -A Vv -B AN -B -A - B
=(A A B) =(A < B)
-vx. A ~I. A i-¥x€S.A! -IxeS.A
Ix. ~A Vx. A 1Ix€S. ~A! VxeS. -A
~ TN

Ix €S.~dyeS. x=#y

Tada!

——A - (A v B) —(A A B) -(A - B) -(A - B)

A ~A A -B ~A v -B A A -B ~A - B
~(A A B) ~(A & B)
A-—-B Ao —-B
~Vx. A ~3x. A ~Vx€S.A [-Ixe€S.Al
Ix. ~A Vx. ~A Ix€S.mA IVxES. -A!
Ix €S.-qIy € S.x =y o T

Now we match this one...

—_

—=A -(A v B) -(A A B) -(A - B) -(A © B)
A -A A =B -A v —B A A —B -A - B
-(A A B) -(A © B)
A-—-B A< -B
~Vx. A ~3x. A ~Vx€S.A [-Ixe€S.Al
Ix. ~A Vx. ~A Ix€S.mA IVxES. -A!
~ TN

Ix €S.VyeS. x=y

And we're done!

"

——=A - (A V B) - (A N B) - (A - B) - (A < B)
A -A AN B -A VvV -B A N B -A <~ B
- (A N B) (A < B)
A - =B Ao =B

-Vx. A —dx. A -Vx €S. A —-dx € S. A

dx. -A Vx. DA dx € S. -A Vx € S. A

— ™~

So there you have it. We have
a collection of templates that we
can apply to negate formulas.

N

— ™~

Hope this helps!

Please feel free to ask
questions if you have them.

N— \//

— ™~

Did you find this useful? If
so, let us know! We can go
and make more guides like these.

— —

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317
	Slide 318
	Slide 319
	Slide 320
	Slide 321
	Slide 322
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331
	Slide 332
	Slide 333
	Slide 334
	Slide 335
	Slide 336
	Slide 337
	Slide 338
	Slide 339
	Slide 340
	Slide 341
	Slide 342
	Slide 343
	Slide 344
	Slide 345
	Slide 346
	Slide 347
	Slide 348
	Slide 349
	Slide 350
	Slide 351
	Slide 352
	Slide 353
	Slide 354
	Slide 355
	Slide 356
	Slide 357
	Slide 358
	Slide 359
	Slide 360
	Slide 361
	Slide 362
	Slide 363
	Slide 364
	Slide 365
	Slide 366
	Slide 367
	Slide 368
	Slide 369
	Slide 370
	Slide 371
	Slide 372
	Slide 373
	Slide 374
	Slide 375
	Slide 376
	Slide 377
	Slide 378
	Slide 379
	Slide 380
	Slide 381
	Slide 382
	Slide 383
	Slide 384
	Slide 385

